


# TRIOPREX N.

TRE GIRI DI FUMO Low NO<sub>x</sub>



### TRIOPREX N per alti rendimenti e basse emissioni



TRIOPREX N è la risposta di Unical agli operatori che chiedono una caldaia a 3 giri fumo effettivi per alte prestazioni e con costi contenuti.

- Alto rendimento (> al 91,5)
- Bassi valori NO<sub>x</sub> (< a 120 mg/kWh)
- Rispetto delle norme EN 303 e 92/42 che competono la costruzione, il rendimento e il funzionamento a "bassa temperatura" delle caldaie.

L'evoluzione tecnica tracciata dalla serie TRIOPREX N soddisfa pienamente i parametri richiesti nella moderna tecnologia impiantistica.

- Omologazione in banda di potenza, ossia la possibilità di un unico modello di funzionare a qualsiasi potenza, compresa nel range di targa, sempre con rendimenti superiori a quanto previsto dalla Legge 10.
- Compatibilità con bruciatori a basse emissioni, grazie ai 3 giri di fumo, senza inversione di fiamma nel focolare.



#### Caratteristiche costruttive

Le caldaie della serie TRIOPREX N a 3 giri di fumo sono costituite da:

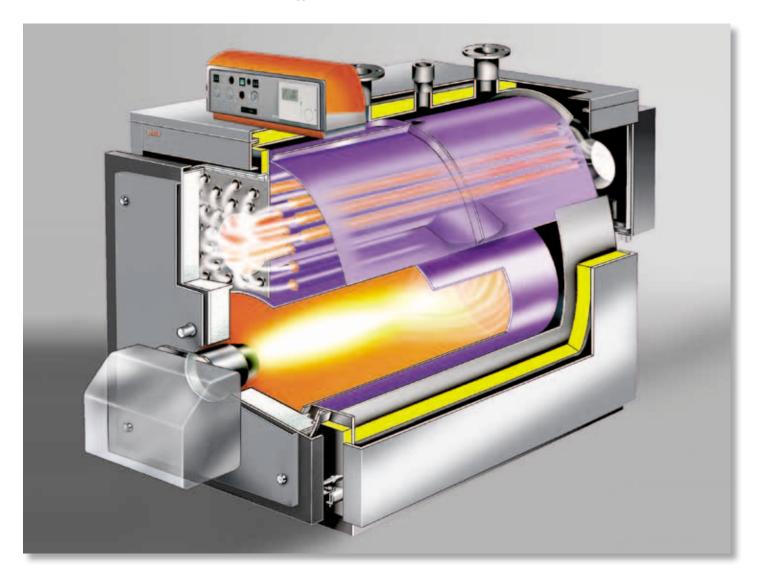
- un fasciame di forma ovale
- *un focolare cilindrico completamente bagnato* nel quale si sviluppa il primo giro fumi
- *il fascio tubiero nella posizione superiore* per la realizzazione del secondo e terzo giro dei fumi
- *uno speciale collettore/distributore* che, ottimizzando la circolazione dell'acqua, ne stratifica correttamente le temperature.

Il fascio tubiero è stato posizionato nella parte alta e più calda della caldaia per ridurre il differenziale di temperatura tra gas di

combustione e fluido primario, così da evitare il pericolo di formazione di condensa, origine e causa della corrosione e conseguente rapido deterioramento delle caldaie tradizionali. Tali soluzioni, applicate con tecnologia costruttiva all'avanguardia, consentono di garantire il corpo caldaia per 8 anni.



Grazie alla sua particolare configurazione tecnica, sinonimo di qualità, sicurezza e durata nel tempo, l'intero corpo caldaia viene fornito con garanzia di 8 anni.


## 3 giri di fumo effettivi

- 3 GIRI DI FUMO EFFETTIVI
- FLESSIBILITÀ D'IMPIEGO GRAZIE ALL'OMOLOGAZIONE IN BANDA DI POTENZA
- FOCOLARE CILINDRICO FLOTTANTE (1° GIRO)
- TUBI FOCOLARE DI RITORNO A GRANDE DIAMETRO (2° GIRO)
- GRANDE FASCIO TUBIERO DI SCAMBIO TERMICO (3° GIRO)
- FASCIAME DI FORMA OVALE (fino a mod. 840) PER LA RIDUZIONE DEGLI INGOMBRI DI MONTAGGIO


- OTTIMIZZAZIONE DELLO SCAMBIO TERMICO MEDIANTE IL PERCORSO GUIDATO DELL'ACQUA IN CALDAIA
- TUBI FUMO DI ALTO SPESSORE CON EFFETTO ANTICONDENSA
- TURBOLATORI ELICOIDALI PER L'OTTIMIZZAZIONE DELLO SCAMBIO TERMICO NEI TUBI DI FUMO
- CASSA FUMI ISOLATA CON INTERCAPEDINE PER RIDUZIONE DELLE DISPERSIONI TERMICHE E SONORE
- ISOLAMENTO INTERNO DELLA PORTA CON CEMENTO SUPER LEGGERO, CON SISTEMA DI TENUTA AUTOBLOCCANTE maggiore durata, minori dispersioni
- ISOLAMENTO MANTELLO CON MATERASSINO DI LANA DI VETRO, CON PROTEZIONE ANTISTRAPPO da 80 mm di spessore fino alla TXN 85 e 100 mm di spessore per i modelli rimanenti
- **DOPPIO POZZETTO POSTERIORE** PORTA SONDE CAPILLARI Ø 15 mm
- PANNELLI DI COMANDO DEDICATI

  CON REGOLAZIONI TERMOSTATICHE O

  ELETTRONICHE O CASCATA
- POSSIBILE ABBINAMENTO CON BRUCIATORI MONO BI/TRI STADIO E MODULANTI, IN PARTICOLARE Low NO<sub>√</sub>



# Cosa sono gli NO<sub>x</sub> e come ridurli



#### Cosa sono gli NO,?

I principali inquinanti atmosferici prodotti dagli impianti di riscaldamento attraverso la combustione sono:

- polveri
- idrocarburi volatili (C<sub>H</sub>)
- ossido di carbonio (CÖ)
- ossidi di zolfo (SO)
- ossidi di azoto (NO)

In generale l'entità ed il mix di tali inquinanti dipendono essenzialmente dal tipo di combustibile utilizzato, dalla qualità della combustione e dalle caratteristiche costruttive della caldaia e del bruciatore. Gli ossidi di azoto sono gli unici inquinanti che non possono essere abbattuti con la scelta del tipo di combustibile, in quanto si formano, per la maggior parte, dalla combinazione dell'azoto e dell'ossigeno contenuti nell'aria comburente, con meccanismi diversi. Con la denominazione "ossidi di azoto" e la formula NO<sub>x</sub>, viene indicata un'associazione delle tre specie NO (monossido di azoto), NO<sub>2</sub> (biossido di azoto o ipoazotide), N<sub>2</sub>O (protossido di azoto).

Più precisamente la specie NO è quella nettamente prevalente all'interno della caldaia (95% o più), mentre la formazione di  $\mathrm{NO}_2$  è significativa solo a bassa temperatura, dunque dopo l'immissione in atmosfera. In funzione della loro origine si possono distinguere tre diversi meccanismi di formazione degli  $\mathrm{NO}_\mathrm{x}$ .

### $NO_{_{X}}$ termici

Si formano dall'azoto presente nell'aria di combustione a temperature di fiamma superiori a 1300°C. La loro concentrazione è direttamente proporzionale alla temperatura della fiamma, al tempo di permanenza nella zona ad alta temperatura dei prodotti della combustione, alla pressione parziale dell'ossigeno nella stessa zona di combustione.

#### $NO_{x}$ pronti

Si formano dalla combinazione dell'azoto molecolare presente nell'aria con frammenti idrocarbonici, prodotti dalla dissociazione dei combustibili durante le prime fasi della combustione. Tale meccanismo favorisce in particolar modo la formazione di NO. La quantità di inquinante è direttamente proporzionale alla concentrazione di ossigeno, ovvero all'eccesso d'aria e non dipende dalla temperatura.

### NO<sub>x</sub> da combustibile

Si formano dalla reazione dei composti organici azotati contenuti nel combustibile con ossigeno dell'aria a temperatura di combustione superiore ai 1000°C. Tale meccanismo di formazione degli ossidi di azoto è presente nella combustione del gasolio e del carbone, non del metano, visto che il metano non contiene azoto. La formazione di NO<sub>x</sub> da combustibile dipende soprattutto dal tempo di permanenza in zona

fiamma e dalla stechiometria locale (cioè dall'eccesso d'aria). Una volta formati, gli ossidi di azoto raggiungono l'atmosfera interagendo chimicamente in modo abbastanza complesso (reazioni fotochimiche e reazioni col vapore acqueo) ed ancora poco chiaro. La quantità di N<sub>2</sub>O è stabile e rimane in atmosfera per molti anni: questo, assieme all'anidride carbonica CO<sub>2</sub> e ad altri inquinanti, contribuisce all'effetto serra.

Il monossido di azoto (NO) è velocemente convertito in NO<sub>2</sub> ed O<sub>2</sub> tramite reazioni con l'ozono O<sub>3</sub> Infine, il biossido di azoto (NO<sub>2</sub>) è rimosso dall'atmosfera tramite conversione in acido nitroso HNO ed ulteriore ossidazione che origina acido nitrico HNO<sub>3</sub>, contribuendo così alla formazione di piogge acide. È giusto ricordare che l' NO<sub>2</sub> è un costituente naturale e permanente dell'atmosfera (proviene essenzialmente da processi di ossidazione dell'ammoniaca formatasi, attraverso meccanismi microbiologici, dalle sostanze organiche presenti nei terreni e corsi d'acqua), ma con una concentrazione di fondo molto bassa.

#### Come ridurli con TRIOPREX N

Il processo di formazione degli NO<sub>x</sub> è fortemente influenzato da:

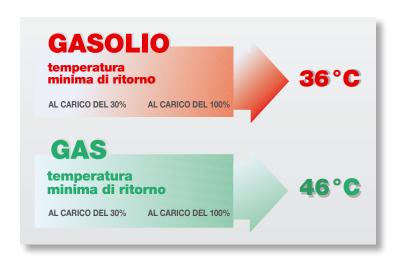
- Temperatura della fiamma;
- Tempo di permanenza dei gas di combustione nella zona ad alta temperatura;
- Concentrazione di ossigeno.

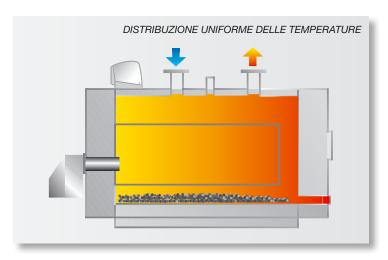
I provvedimenti da adottare sono:

- riduzione della temperatura di combustione;
- diminuzione del carico termico (kW/m³) lavorando al di sotto della portata termica nominale,

- riduzione del tempo di permanenza dei gas in camera di combustione;
- riduzione della concentrazione di ossigeno.

Unical, con la caldaia TRIOPREX N, ha adottato le seguenti soluzioni costruttive per ridurre la formazione degli NO<sub>x</sub>:


- percorso fumi a 3 giri di fumo senza inversione di fiamma nel focolare il focolare non è più ad inversione di fiamma bensì ad attraversamento diretto; la fiamma del bruciatore risulta più compatta e più corta, riducendo così il tempo di permanenza ad alta temperatura; l'assenza di inversione permette inoltre un maggiore raffreddamento della fiamma da parte delle pareti del focolare bagnate dall'acqua;
- il volume della camera di combustione è stato aumentato rispetto a caldaie 3 giri fumo standard di pari potenza.


Con l'adozione di moderni bruciatori a basso NO, si ottiene una riduzione ulteriore delle emissioni con:


- ricircolazione fumi (reburning), una parte dei gas di combustione viene prelevata ed inviata nuovamente in camera di combustione assieme all'aria comburente. Così facendo si abbassa la pressione parziale dell'ossigeno e si diminuisce la temperatura di fiamma.
- riduzione della pressione parziale dell'ossigeno, grazie ad una diminuzione dell'eccesso d'aria.

Un ulteriore controllo degli NO<sub>x</sub> si ottiene riducendo la portata termica del bruciatore nel campo previsto.

### Meno combustibile maggiore comfort







### Il funzionamento a bassa temperatura

La particolare tecnologia costruttiva impiegata, caratterizzata dallo sfruttamento dello sviluppo in altezza del generatore, abbinato all'accurato studio del percorso del fluido termovettore, offre la possibilità di impiegare le caldaie TRIOPREX N fino ad una temperatura minima del ritorno di 36°C con funzionamento a gasolio e di 46°C per il funzionamento a gas, sia con carico termico al 30% che al 100%. Questa opportunità consente con l'ausilio di una termoregolazione dotata di sonda esterna, di far modulare direttamente in caldaia l'acqua che riscalda l'impianto.

Il funzionamento diretto a temperature più basse in tutte le condizioni di carico, riduce sia le perdite di energia al mantello che nei fumi, consentendo un sensibile risparmio di combustibile e quindi minori emissioni inquinanti.

### Struttura idrodinamica del fasciame

Ottimizzazione dello scambio termico mediante percorso guidato e frenato dell'acqua in caldaia: il ritorno dell'acqua fredda viene deviato da una apposita gronda in modo da lambire le parti più sollecitate termicamente (piastra tubiera anteriore, zona frontale dei tubi fumo e del focolare).

#### Focolare cilindrico flottante

- Focolare cilindrico flottante antistress termomeccanico da 500 kW fino al mod. da 1900 kW
- Fondo con piastre dissipazione per maggiore rendimento
- Maggiore resistenza meccanica

Posizionamento del fascio tubiero (3° giro) sopra il focolare cilindrico flottante (1° giro) per:

- ridotto raffreddamento delle strutture con riduzione delle formazioni di condensa
- riduzione dei fenomeni di calcarizzazione nella parte inferiore.

Il tubo focolare di ritorno a grande diametro (2° giro) permette l'inversione dei fumi sulla porta e la riduzione del carico termico specifico.

## Tecnologia d'avanguardia per una lunga durata

Tenuta nel tempo ed isolamento termico del portellone sono i particolari che rappresentano il "biglietto da visita" di una caldaia di alta qualità costruttiva e che ne garantiscono la durata ed il rendimento.

#### La porta anteriore

La pluriennale esperienza dei tecnici Unical nello sviluppo di questa gamma di caldaie ha migliorato profondamente le caratteristiche dell'isolamento della porta anteriore, responsabile del 30% delle dispersioni termiche per irraggiamento dei generatori:

- fino a 380 kW viene impiegata fibra ceramica
- da 500 kW fino a 840 kW viene utilizzato uno cemento super leggero riciclabile ad alto potere isolante, leggero e più resistente dei materiali tradizionali
- da 1100 kW fino a 1900 kW viene utilizzato uno speciale cemento refrattario a doppio strato.

La perfetta tenuta dei gas, importante non solo ai fini delle dispersioni, ma anche della durata della porta stessa, é garantita dalla chiusura auto-centrante e reversibile (a destra o sinistra) con registrazione precisa: *verticale, trasversale, assiale.* 

Una particolarità interessante relativa alla porta è il sistema di tenuta autobloccante, realizzato attraverso piatti di sostegno in acciaio a deformazione elastica che compensa e riposiziona la porta esattamente sulla guarnizione di battuta anche nel caso di indurimento dello stesso cordone in fibra ceramica.


#### *L'isolamento*

Al fine di limitare le perdite di calore passive verso l'ambiente, il mantello esterno e la camera fumo posteriore sono completamente isolati con lana minerale telata, dello spessore di 80 mm per i mod. TXN 65 - 85 e 100 mm per la restante serie.



#### Effetto aletta

Un ulteriore accorgimento per ridurre la formazione di condense acide e prolungare quindi la durata del generatore, in particolare nei tubi di fumo e nella saldatura degli stessi alla piastra tubiera posteriore, è quello di aumentare la lunghezza del tubo oltre la piastra stessa. Tale accorgimento provoca un "effetto aletta" che indirizza il calore Q accumulato verso il cordone di saldatura asciugando la condensa intorno ad esso e impedendone la formazione.



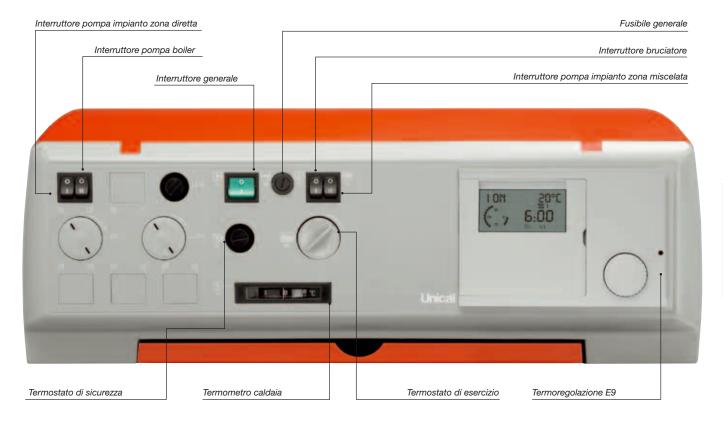
### Il quadro comandi

Il quadro comandi è conforme alle norme vigenti ed alla Direttiva Bassa Tensione 73/23 CEE.

A richiesta, può essere adattato per qualsiasi esigenza di impianto.

TRIOPREX N viene fornita con il quadro comandi **standard termostatico** che permette la regolazione:

- del bruciatore
- della pompa
- della temperatura dell'acqua. Il quadro è provvisto di: interruttore generale, interruttore pompa impianto, interruttore bruciatore, termometro


interruttore bruciatore, termometro caldaia, termostato di esercizio a due stadi, termostato di sicurezza, termostato di minima (interno al quadro). Per impianti più complessi è disponibile il **quadro comandi elettronico** (a richiesta), completo di

**Termoregolazione E9** e relative sonde di caldaia, di mandata, esterna e bollitore e ambiente (optional).

#### Per controllare:

- un impianto ad una zona diretta senza valvola miscelatrice
- un impianto ad una zona con valvola miscelatrice motorizzata
- un impianto a 2 zone, una diretta ed una con valvola miscelatrice

Per la gestione di 2 generatori in cascata, contattare l'Ufficio Prevendita.



Pannello ELETTRONICO

### La termoregolazione E9

#### Ottimizzazione impianto



**Ottimizzazione**La termoregolazione, in base agli orari impostati dall'utente e valutate le caratteristiche dell'impianto, procederà, con più o meno anticipo, all'accensione o alle modifiche del regime di fiamma per assicurare la temperatura di comfort all'orario richiesto dall'utente.



Rapido raggiungimento temperatura Si ottiene mediante il calcolo dell'anticipo

ottimale di accensione.Il calcolo di preaccensione può essere effettuato in base alla temperatura esterna oppure in base alla temperatura ambiente.



#### Antisurriscaldamento

E' assicurato il controllo della temperatura di sicurezza del generatore attraverso il postfunzionamento dei circolatori al fine di smaltire l'eventuale inerzia termica



#### Autoadattamento

Attraverso l'elaborazione di dati inviati dalla sonda ambiente, la funzione adatta il calore del generatore, alle caratteristiche dell'edificio a garanzia di un costante monitoraggio della temperatura interna al variare della temperatura esterna, tenuto conto dell'inerzia termica dell'edificio e degli apporti di calore "gratuiti" (irraggiamento solare, fonti di calore interne).



#### Ottimizzazione tempi caldaia

Ottimizzazione temperatura caldaia o distanza curve di riscaldamento. Nel caso siano impostate per i 2 circuiti da riscaldare diverse curve di riscaldamento, la temperatura nominale della caldaia viene calcolata in funzione della temperatura del circuito di miscelazione con maggior portata e della distanza delle 2 curve di riscaldamento impostate.





#### Tempo di apertura valvola:

Detta il tempo di apertura in base alle caratteristiche del servomotore.



#### Protezione antigelo

Evita, grazie all'inserimento automatico del ciclo di riscaldamento, il congelamento dell'impianto.

In modalità antigelo la temperatura ambiente per tutti i circuiti di riscaldamento è pari a 5°C è la temperatura di allarme per la prèparazione dell'acqua sanitaria corrisponde a 10°C

#### Gestione A.C.S.



#### Produzione acqua sanitaria

Sono svariati i programmi che gestiscono la produzione di acqua sanitaria. Si può optare dal massimo comfort alla massima economia. Per la rapida messa a regime del bollitore, la termoregolazione provvede a portare la temperatura di caldaia al massimo valore impostato.



#### Antilegionella

Riscaldamento a 60°C della temperatura del boiler ogni 20 cicli di riscaldamento o almeno una volta alla settimana al sabato alle ore 1.00. Con tale procedimento si eliminano eventuali elementi patogeni che si fossero formati



#### Ottimizzazione pompa carico bollitore

La pompa di carico viene inserita solo se la temperatura della caldaia supera di 5 gradi la temperatura del boiler. Viene disattivata con temperatura della caldaia minore della temperatura del boiler o con temperatura del boiler maggiore della temperatura nominale.

#### rogrammazione



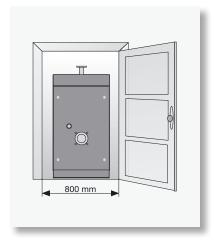
#### Impostazione programmi

Gli orari possono essere impostati giornalieri o settimanali con più accensioni e spegnimenti o riduzioni durante l'arco della giornata.



Con la stessa termoregolazione si possono controllare 2 circuiti indipendenti con differenti caratteristiche, pur avendo assicurate tutte le funzioni descritte, compreso il funzionamento in temperatura scorrevole profonda

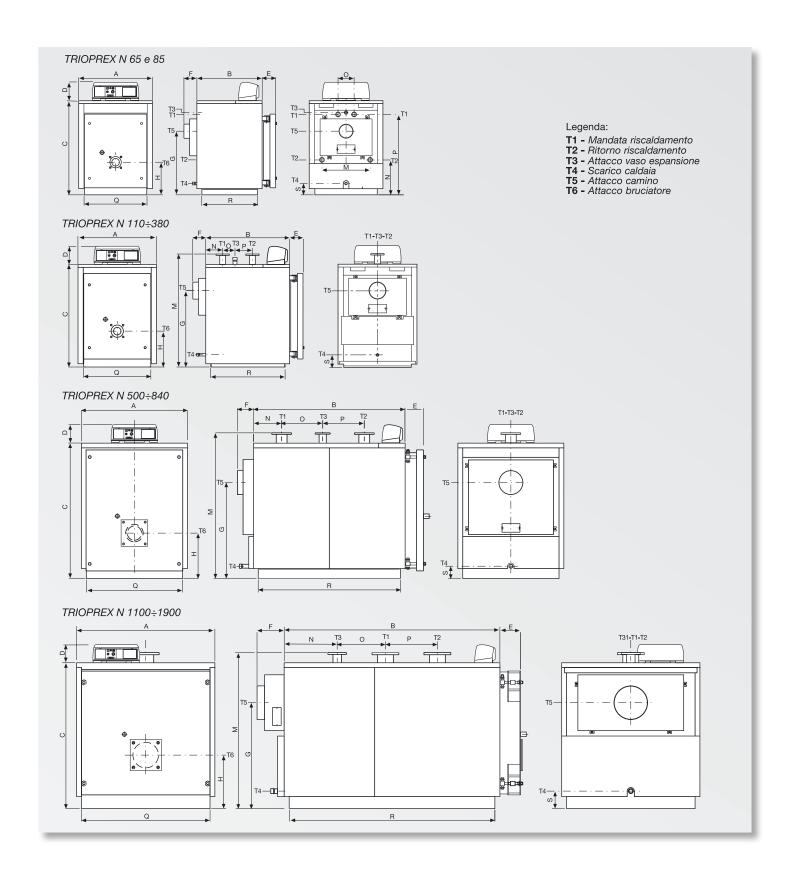





Integrazione con sistemi *ad energie rinnovabili* sistemi solari e/o caldaie a biomassa.

## Minimo ingombro

Uno degli obiettivi perseguti nello studio della caldaia TRIOPREX N è stato quello di fornire una valida soluzione ai problemi di ingombro che frequentemente si incontrano quando si devono ammodernare centrali termiche già esistenti. In molti casi le caldaie devono essere introdotte in locali poco spaziosi e di difficile accesso. La struttura di TRIOPREX N è


a sviluppo verticale, con il fascio tubiero posto al di sopra del focolare e la maggior parte dei modelli sono in grado di passare attraverso porte larghe 800 mm.



#### LARGHEZZA DEL CORPO CALDAIA SENZA ISOLAMENTO TERMICO (misure in mm)

| Modello                     | Larghezza<br>corpo<br>caldaia |
|-----------------------------|-------------------------------|
|                             | mm                            |
| TXN 65 - TXN 85             | 660                           |
| TXN 110 - TXN 150           | 710                           |
| TXN 185 - TXN 225           | 750                           |
| TXN 300 - TXN 380           | 780                           |
| TXN 500 - TXN 630 - TXN 730 | 790                           |
| TXN 840                     | 1020                          |
| TXN 1100 - TXN 1320         | 1360                          |
| TXN 1600 - TXN 1900         | 1520                          |

### Dimensioni



### Dati tecnici

| TRIOPREX N | Potenza<br>utile<br>min/max | Potenza<br>focolare<br>min/max | Capacità<br>caldaia | Perdite di<br>carico lato<br>acqua(*) | Perdite di<br>carico lato<br>fumi | Pressione<br>max di<br>esercizio<br>caldaia | Volume<br>camera di<br>combustione | PESO |
|------------|-----------------------------|--------------------------------|---------------------|---------------------------------------|-----------------------------------|---------------------------------------------|------------------------------------|------|
| Modello    | kW                          | kW                             | 1                   | m c.a.                                | mm c.a.                           | bar                                         | $m^3$                              | kg   |
| TX N 65    | 55÷65                       | 59,8÷71                        | 131                 | 0,04÷0,06                             | 3÷4                               | 5                                           | 0,060                              | 307  |
| TX N 85    | 72÷85                       | 78,3÷93                        | 187                 | 0,05÷0,07                             | 4,5÷6                             | 5                                           | 0,088                              | 348  |
| TX N 110   | 93÷110                      | 101÷120                        | 204                 | 0,06÷0,08                             | 5,5÷7,5                           | 5                                           | 0,103                              | 426  |
| TX N 150   | 127÷150                     | 137,7÷163                      | 270                 | 0,08÷0,10                             | 12÷16                             | 5                                           | 0,139                              | 503  |
| TX N 185   | 157÷185                     | 170÷202                        | 285                 | 0,10÷0,18                             | 9÷12                              | 5                                           | 0,155                              | 564  |
| TX N 225   | 191÷225                     | 207÷245                        | 322                 | 0,17÷0,20                             | 12,5÷17,5                         | 5                                           | 0,176                              | 621  |
| TX N 300   | 255÷300                     | 276÷327                        | 408                 | 0,22÷0,35                             | 9÷12                              | 5                                           | 0,239                              | 812  |
| TX N 380   | 323÷380                     | 350÷414                        | 475                 | 0,32÷0,53                             | 15÷21                             | 5                                           | 0,280                              | 906  |
| TX N 500   | 425÷500                     | 460÷545                        | 656                 | 0,10÷0,15                             | 25÷35                             | 5                                           | 0,389                              | 1256 |
| TX N 630   | 535÷630                     | 579÷686                        | 737                 | 0,16÷0,23                             | 32÷45                             | 5                                           | 0,443                              | 1357 |
| TX N 730   | 620÷730                     | 671÷795                        | 807                 | 0,23÷0,33                             | 35÷49                             | 5                                           | 0,498                              | 1498 |
| TX N 840   | 714÷840                     | 772÷915                        | 932                 | 0,35÷0,52                             | 42÷58                             | 5                                           | 0,542                              | 1712 |
| TX N 1100  | 935÷1100                    | 1012÷1198                      | 1580                | 0,15÷0,21                             | 45÷62                             | 6                                           | 0,753                              | 2444 |
| TX N 1320  | 1122÷1320                   | 1214÷1438                      | 1791                | 0,21÷0,30                             | 61÷85                             | 6                                           | 0,889                              | 2965 |
| TX N 1600  | 1360÷1600                   | 1470÷1743                      | 2297                | 0,20÷0,28                             | 40÷55                             | 6                                           | 1,116                              | 3685 |
| TX N 1900  | 1615÷1900                   | 1745÷2070                      | 2496                | 0,27÷0,39                             | 52÷73                             | 6                                           | 1,261                              | 4089 |

<sup>(\*)</sup> Perdite di carico corrispondenti ad un salto termico di 15K.

| TRIOPREX N | Α    | В    | С    | D   | E   | F   | G    | Н   | <b>M</b> * | N   | 0   | P   | Q*   | R*   | s   | T1<br>T2 | <i>T</i> 3 | <b>T</b> 4         | T5             | T6             |
|------------|------|------|------|-----|-----|-----|------|-----|------------|-----|-----|-----|------|------|-----|----------|------------|--------------------|----------------|----------------|
| Modello    | mm   | mm   | mm   | mm  | mm  | mm  | mm   | mm  | mm         | mm  | mm  | mm  | mm   | mm   | mm  | PN 16    | PN 16      | ISO 7/1            | <b>Ø</b><br>mm | <b>Ø</b><br>mm |
| TX N 65    | 740  | 690  | 950  | 190 | 140 | 145 | 660  | 345 | 470        | 310 | 190 | 846 | 660  | 590  | 120 | Rp11/2   | Rp1        | Rp3/4              | 150            | 132            |
| TX N 85    | 740  | 950  | 950  | 190 | 140 | 145 | 660  | 345 | 470        | 310 | 190 | 846 | 660  | 850  | 120 | Rp11/2   | Rp1        | Rp3/4              | 150            | 132            |
| TX N 110   | 820  | 885  | 1082 | 190 | 140 | 145 | 748  | 380 | 1210       | 175 | 130 | 185 | 710  | 786  | 130 | DN50     | Rp11/4     | Rp3/4              | 180            | 132            |
| TX N 150   | 820  | 1145 | 1082 | 190 | 140 | 145 | 748  | 380 | 1210       | 175 | 390 | 185 | 710  | 1046 | 130 | DN50     | Rp11/4     | <i>Rp</i> 3/4      | 180            | 132            |
| TX N 185   | 860  | 1080 | 1182 | 190 | 140 | 145 | 828  | 400 | 1310       | 215 | 210 | 250 | 750  | 981  | 130 | DN65     | Rp11/2     | <i>Rp</i> 3/4      | 180            | 180            |
| TX N 225   | 860  | 1210 | 1182 | 190 | 140 | 145 | 828  | 400 | 1310       | 215 | 340 | 250 | 750  | 1111 | 130 | DN65     | Rp11/2     | Rp3/4              | 180            | 180            |
| TX N 300   | 890  | 1275 | 1352 | 190 | 140 | 145 | 928  | 440 | 1485       | 255 | 285 | 315 | 780  | 1177 | 125 | DN80     | Rp2        | Rp3/4              | 225            | 180            |
| TX N 380   | 890  | 1470 | 1352 | 190 | 140 | 145 | 928  | 440 | 1485       | 255 | 480 | 315 | 780  | 1372 | 125 | DN80     | Rp2        | Rp3/4              | 225            | 180            |
| TX N 500   | 920  | 1605 | 1645 | 190 | 135 | 195 | 1110 | 480 | 1735       | 298 | 435 | 440 | 790  | 1505 | 70  | DN100    | DN65       | Rp1                | 250            | 220            |
| TX N 630   | 920  | 1800 | 1645 | 190 | 135 | 195 | 1110 | 480 | 1735       | 298 | 630 | 440 | 790  | 1790 | 70  | DN100    | DN65       | Rp1                | 250            | 220            |
| TX N 730   | 920  | 1995 | 1645 | 190 | 135 | 195 | 1110 | 480 | 1735       | 298 | 825 | 440 | 790  | 1895 | 70  | DN100    | DN65       | Rp1                | 250            | 220            |
| TX N 840   | 1122 | 2115 | 1432 | 190 | 195 | 195 | 1025 | 480 | 1540       | 298 | 945 | 440 | 1020 | 2014 | 125 | DN100    | DN65       | Rp11/4             | 250            | 270            |
| TX N 1100  | 1462 | 2282 | 1542 | 190 | 230 | 290 | 1120 | 565 | 1650       | 561 | 510 | 550 | 1360 | 2176 | 185 | DN150    | DN80       | Rp11/2             | 350            | 270            |
| TX N 1320  | 1462 | 2652 | 1542 | 190 | 230 | 290 | 1120 | 565 | 1650       | 561 | 880 | 550 | 1360 | 2546 | 185 | DN150    | DN80       | Rp1 <sub>1/2</sub> | 350            | 270            |
| TX N 1600  | 1622 | 2692 | 1702 | 190 | 260 | 290 | 1245 | 605 | 1810       | 661 | 670 | 700 | 1520 | 2590 | 185 | DN175    | DN100      | Rp1 <sub>1/2</sub> | 400            | 285            |
| TX N 1900  | 1622 | 3014 | 1702 | 190 | 260 | 290 | 1245 | 605 | 1810       | 662 | 990 | 700 | 1520 | 2910 | 185 | DN175    | DN100      | Rp1 <sub>1/2</sub> | 400            | 285            |



