

Fan coil a parete alta

FM 2-4 kW

Motore

brushless

Impianto a

2 tubi

Ventilatore

tangenziale

Installazione

a parete alta

Supervisione

FRG0

Telecomando a infrarossi

Nuovo terminale idronico Galletti che coniuga silenziosità, design e gestione del comfort.

FM si distingue per un elevato contenuto tecnologico grazie all'impiego di un motore BLDC, valvola di regolazione incorporata e comunicazione seriale.

Il controllo automatico della velocità di ventilazione è gestito attraverso una logica proporzionale, integrativa e derivativa capace di garantire, rispettivamente, stabilità, precisione e rapidità d'intervento.

La comunicazione seriale è in grado di fare interagire fino a 32 unità garantendo una gestione globale, con modifica automatica dei parametri su tutte le unità coordinata da unico punto.

Attraverso l'accessorio WALLPAD è possibile controllare una ad una le unità connesse nel sistema.

FM può essere interconnesso ad un sistema di supervisione con comunicazione Modbus.

Se da un lato la valvola già montata a bordo e il sistema di tubi flessibili permettono un'installazione rapida e sicura, dall'altro la tecnologia ventilante con motore BLDC e la batteria per ottimizzato scambio termico offrono all'utente un terminale silenzioso, elevate prestazioni e bassi consumi.

- ✓ Motore BLDC a controllo elettronico
- ✓ Dimensioni ridotte e identiche per l'intera gamma
- ✓ Valvole ON OFF a 2 o 3 vie incorporata
- Regolazione PID
- Sviluppo reti globali, indirizzabili, con supervisore esterno

VERSIONI DISPONIBILI

Modelli 23/33/43

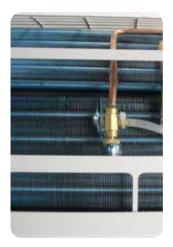
Questi modelli sono caratterizzati dalla presenza di una valvola a 3 vie installata a bordo che permette di integrarli in qualsiasi tipo di impianto, in particolare in presenza di pompe ON OFF.

Modelli 22/32/42

I modelli con valvola a 2 vie già installata a bordo si adattano perfettamente ai sistemi in cui sia presente un circolatore modulante o altri mezzi per variare la portata d'acqua.

COMPONENTI PRINCIPALI

Mobile di copertura


Dal gradevole design studiato per integrarsi in ogni tipo di ambiente, è realizzato in ABS. L'uscita aria integrata è dotata di deflettore motorizzato, con movimento automatico o posizionabile dall'utente, ed alette orientabili per assicurare la distribuzione dell'aria nel locale in modo uniforme.

Il pannello frontale è completo di display di visualizzazione dello stato di funzionamento e della temperatura ambiente.

Batteria di scambio termico

Lo scambiatore di calore a pacco alettato è composto da tubo di rame e aletta in alluminio persianata.

Il trattamento idrofilico sulle alette garantisce uno scambio termico ottimale anche in presenza di condensazione superficiale.

Gruppo valvole

Valvole ON OFF a 2 o 3 vie già cablate e installate all'interno del terminale. Il collegamento all'impianto avviene per mezzo di tubi flessibili collocati sul retro dell'unità.

Senza aumenti di dimensioni e complicazioni d'installazione la valvola si chiude al raggiungimento del set point ricircolando il flusso d'acqua ed evitandone l'ingresso in batteria.

Telecomando

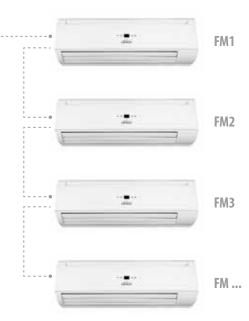
Fornito di serie, il comando a infrarossi consente il controllo di un solo terminale o di una rete combinata e l'impostazione di fasce orarie giornaliere.

Motore BLDC

Motore elettronico a magneti permanenti per consentire una modulazione continua della velocità di ventilazione con assorbimenti elettrici più che dimezzati rispetto ai motori asincroni.

Ventilatore

Ventilatore tangenziale a bassa rumorosità.



WALLPAD

Il vero punto di forza di questo comando è legato allo sviluppo di reti di comunicazione. Connettendo fino a 32 unità attraverso un bus di rete e collegando il comando WALLPAD ad una di esse (Master) è possibile controllarne il funzionamento.

In particolare l'utente potrà scegliere se comunicare contemporaneamente a tutte le unità connesse, ad esempio variando la modalità di funzionamento dell'intero impianto, o dialogare con ogni singola unità differenziando i parametri di regolazione fra un fan coil e l'altro. La scelta fra una comunicazione "globale" o a un singolo terminale viene effettuata tramite un semplice pulsante.

ACCESSORI

WALLPAD

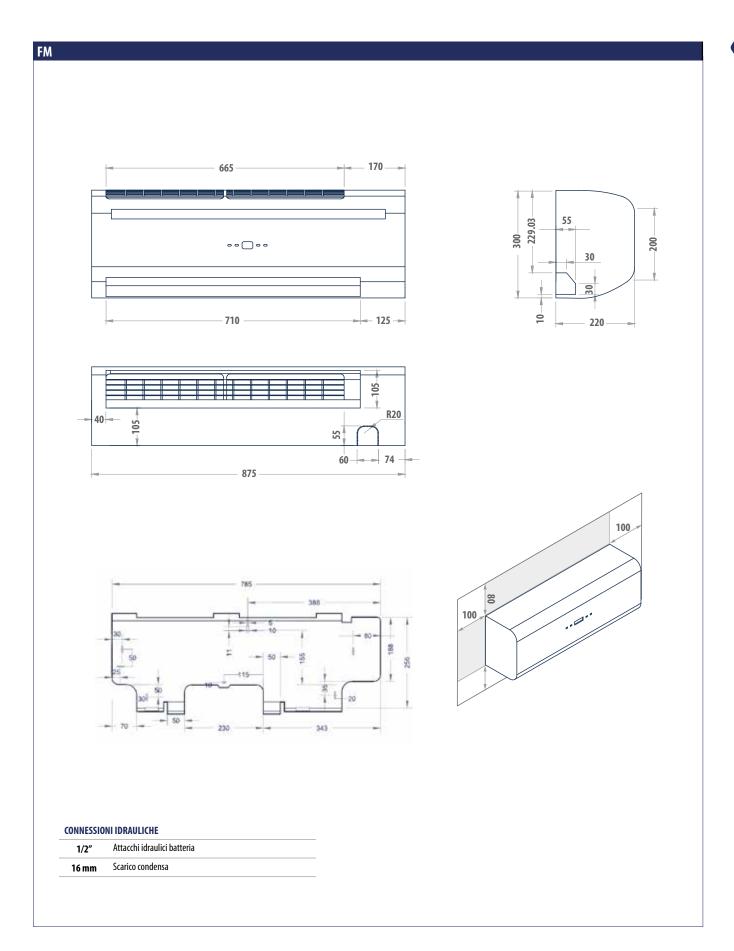
Il dispositivo di controllo a filo, installabile a parete, consente una gestione avanzata del terminale idronico. In particolare il comando permette all'utente di conoscere nei dettagli e in ogni momento lo stato di funzionamento dell'unità comprensivo di temperature, set point, velocità, modalità di funzionamento, movimentazione flap e molte altre informazioni. Implementa inoltre un controllo settimanale delle fasce orarie, con timer di accensione e spegnimento.

Dati tecnici nominali

Modello			22/23			32/33			42 / 43		
Tensione di alimentazione	V - ph - Hz	230-1-50 220-1-60									
Velocità		min	med	max	min	med	max	min	med	max	
Resa raffreddamento totale (1) (E)	kW	1,37	1,64	2,07	1,87	2,48	3,03	2,67	3,28	3,74	
Resa raffreddamento sensibile (1) (E)	kW	1,00	1,20	1,52	1,35	1,81	2,22	1,94	2,40	2,74	
Portata acqua (1)	l/h	234	281	355	333	413	518	459	564	642	
Perdita di carico (1) (E)	kPa	12	19	29	16	28	39	28	40	50	
Perdita di carico valvole 2 vie e 3 vie	kPa	2	3	5	5	6	11	11	17	22	
Resa riscaldamento (2) (E)	kW	1,72	2,08	2,64	2,34	3,14	3,85	3,37	4,17	4,77	
Perdita di carico (2) (E)	kPa	11	15	22	14	25	35	25	36	45	
Perdita di carico valvole 2 vie e 3 vie	kPa	2	3	5	5	6	11	11	16	21	
Portata aria	m³/h	290	370	500	370	445	645	570	740	876	
Potenza assorbita (E)	W	10	13	18	10	15	22	13	20	30	
Potenza sonora (3) (E)	dB/A	35	40	48	40	43	54	46	53	58	

⁽¹⁾ Temperatura acqua 7 / 12°C, temperatura aria 27°C B.S., 19°C B.U (47% umidità relativa)

⁽²⁾ Temperatura acqua in ingresso 50° C, portata acqua come funzionamento in raffreddamento, temperatura aria 20° C


⁽³⁾ Potenza sonora rilevata secondo ISO 3741 e ISO 3742

⁽E) Dati certificati EUROVENT

Disegni dimensionali

