

Pressione max: 5 bar						
Temperatura massima d'esercizio: 95° C	Funzionamento: acqua calda					
Attacchi: N° 2 da 1/2" gas - n° 1 da 1/8" gas per valvola di sfiato						

Dal design elegante, con una forma neoclassica, lo stile si basa sul concept che ha contraddistinto il Rosy evolvendone il progetto. Grazie alla conformazione ed al posizionamento degli elementi radianti consente delle rese termiche molto elevate. Rosy Max, adattandosi così ad impianti a risparmio energetico come caldaie a condensazione e pompe di calore, è un complemento ideale per case progettate in classe A.

Materiali:

- Collettori orizzontali in acciaio al carbonio verniciato
 a 38 mm
- \bullet Corpi radianti verticali in acciaio al carbonio verniciato rettangolari 10x50 mm.

Kit di fissaggio:

Supporti, valvolina di sfiato, chiave esagonale, tasselli e viti per fissaggio idonei per impiego su pareti compatte o in laterizio forato, istruzioni di montaggio.

Imballo

Il radiatore viene protetto con film di polietilene e scatola di cartone totalmente riciclabili. Istruzioni uso e manutenzione a corredo.

MODELLO BREVETTATO - PATENTED

Verniciatura:

A polveri epossipoliestere ecologiche a 90 gloss di brillantezza. (Processo certificato DIN 55900-1,-2)

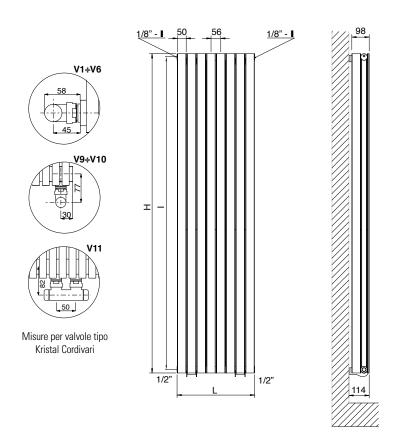
Colori:

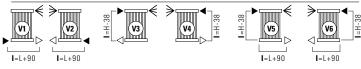
Colore standard Bianco RAL 9010. Per altri colori consultare la tabella colori a pag. 212 con sovrapprezzo del 30%.

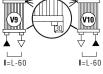
Accessori:

Per l'elenco completo consultare pag. 186

ACCESSORI TECNICI




^{*}I codici nelle tabelle si riferiscono al colore standard BIANCO R01 - RAL 9010; i colori diversi dallo standard vengono forniti esclusivamente a corredo del radiatore colorato. Riferirsi alle maggiorazioni tabella colori di pag. 212.



ALLACCIAMENTI STANDARD SENZA SOVRAPPREZZO

Specificare sempre in sede di ordine il tipo di allacciamento (da V1 a V11). Escluso allacciamento monotubo.

ALLACCIAMENTI SPECIALI	
OIV EV	V11

ROSY I	ЛАХ							
Altezza	Larghezza	Nr°	Interasse	Peso a vuoto	Capacità	Potenza termica a Δt = 50°C*		75/65/20°C (Δt=50°C)
[mm]	L [mm]	Elementi	l [mm]	[Kg]	[lt]	Watt	Kcal/h	$^{\mbox{\tiny (+)}}$ Equazione caratteristica φ in Watt e $~\Delta t$ in $^{\circ}\text{C}$
	274	5	1762	38,7	9,5	1368	1176	$\phi = 6.8767 * \Delta t^{1.3530}$
	330	6	1762	43,8	10,8	1550	1333	$\phi = 7,7936 * \Delta t^{1,3530}$
	386	7	1762	51,2	12,7	1824	1568	$\phi = 9.1698 * \Delta t ^{1.3530}$
	442	8	1762	58,7	14,6	2097	1803	$\phi = 10,5443 * \Delta t^{1,3530}$
4000	498	9	1762	66,1	16,5	2371	2038	$\phi = 11,9196 * \Delta t^{1,3530}$
1800	554	10	1762	71,2	17,8	2553	2195	$\phi = 12,8365 * \Delta t^{1,3530}$
	610	11	1762	78,6	19,7	2827	2430	$\phi = 14,2118 * \Delta t^{1,3530}$
	666	12	1762	86,0	21,6	3100	2666	$\phi = 15,5872 * \Delta t^{1,3530}$
	722	13	1762	93,5	23,5	3374	2901	$\phi = 16,9625 * \Delta t^{1,3530}$
	778	14	1762	101,00	25,4	3648	3136	$\phi = 18,3378 * \Delta t^{1,3530}$
	274	5	1962	42,9	10,5	1512	1300	$\phi = 7,6303 * \Delta t^{1,3520}$
	330	6	1962	48,5	11,9	1713	1473	$\phi = 8,6477 * \Delta t^{1,3520}$
	386	7	1962	56,7	14,0	2016	1733	$\phi = 10,1738 * \Delta t^{1,3520}$
	442	8	1962	65,0	16,1	2318	1993	$\phi = 11,6999 * \Delta t^{1,3520}$
2000	498	9	1962	73,2	18,2	2620	2253	$\phi = 13,2259 * \Delta t^{1,3520}$
2000	554	10	1962	78,8	19,7	2822	2426	$\phi = 14,2433 * \Delta t^{1,3520}$
	610	11	1962	87,1	21,7	3124	2686	$\phi = 15,7694 * \Delta t^{1.3520}$
	666	12	1962	95,3	23,8	3427	2946	$\phi = 17,2955 * \Delta t^{1.3520}$
	722	13	1962	103,6	25,9	3729	3206	$\phi = 18,8215 * \Delta t^{1,3520}$
	778	14	1962	111,9	28,0	4032	3466	$\phi = 20,3476 * \Delta t^{1,3520}$

^(*) Per il calcolo della potenza termica con Δ t diverso da 50 °C, vedi formule pag. 202.

